请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

学术报告

首页 >> 学术报告 >> 正文

【学术报告及分析与偏微分方程讨论班(2024春季第2讲)】A three-dimensional Keller-Segel-Navier-Stokes system involving subquadratic logistic degradation

发布日期:2024-04-07    点击:

威廉希尔学术报告

--- 分析与偏微分方程讨论班(2024春季第2讲)


A three-dimensional Keller-Segel-Navier-Stokes system involving subquadratic logistic degradation

向昭银 (电子科技大学)


时间:4月8日(周一)上午10:30-11:30


地点:#腾讯会议:632-914-503     #会议密码:420408

#会议链接:https://meeting.tencent.com/dm/VB2pJDmMmAn3


摘要: In this talk, we consider a Keller-Segel-Navier-Stokes system involving subquadratic logistic degradation in a three-dimensional smoothly bounded domain along with reasonably mild initial conditions and no- flux/no-flux/Dirichlet boundary conditions for cell population/ chemical/fluid. The purpose of the present talk is to firstly show the generalized solvability for the model under some subquadratic logistic exponent restriction, which indicates that persistent Dirac-type singularities can be ruled out, and to secondly exhibit the eventual smoothness of these solutions under the stronger restriction whenever linear growth coefficient of population is not too large. These results especially extend the precedent works due to Winkler (J. Funct. Anal. 276 (2019): 1339-1401; Comm. Math. Phys. 367 (2022): 439-489.), where, among other things, the corresponding studies focus on the case of quadratic degradation.


邀请人:徐丽

欢迎大家参加!


快速链接

版权所有 © 2021  威廉希尔william hill_英国威廉希尔公司-中文网站
地址:北京市昌平区高教园南三街9号   电话:61716719