请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

师资队伍

名: 谢振肖

称: 副教授

所属系别: 基础数学系

学科专业: 微分几何

办公地点: 沙河E503-5

办公电话:

电子邮箱: xiezhenxiao@buaa.edu.cn

教育背景

l 2005.09-2009.06,  山东师范大学,  本科

l 2009.09-2014.07,  北京大学,      硕博

工作简历

l 2014.07-2023.10,  中国矿业大学(北京),讲师、副教授

l 2018.09-2019.09,  美国圣路易斯华盛顿大学,访问学者

科研项目

l 2016.01-2019.12,  国自然青年项目No.11601513,  主持

l 2022.01-2025.12,  国自然面上项目No.12171473,  主持

代表作论著

[1] (with J.C. Wan) Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature, Ann. Mat. Pur. Appl., 202 (2023) 1369–1380.

[2] (with Q.S. Chi, Y. Xu) Structure of minimal 2-spheres of constant curvature in the complex hyperquadric, Adv. Math., 391 (2021), 34pp.

[3] (with T.Z. Li, X. Ma, C.P. Wang) Wintgen ideal submanifolds: new examples, frame sequence

and Moebius homogenous classification, Adv. Math., 381 (2021), 31pp.

[4] (with C.P. Wang, X.Z. Wang) Conformally flat Lorentzian hypersurfaces in Lorentzian 4-space

with special shape operator, Int. J. Math., 32 (2021), 18pp.

[5] (with C.P. Wang, X.Z. Wang) Conformally flat Lorentzian hypersurfaces in R^4_1 with a pair of complex conjugate principal curvatures, J. Geom. Phys., 130 (2018), 249-259.

[6] (with T.Z. Li, X. Ma, C.P. Wang) Wintgen ideal submanifolds: reduction theorems and a coarse classification, Ann. Glob. Anal. Geom., 53 (2018), 377-403.

[7] (with C.P. Wang, X.Z. Wang) Conformally flat Lorentzian hypersurfaces in R^4_1 with three

distinct principal curvatures, Sci. China Math., 61 (2018), 897-916.

[8] (with C.P. Wang, X.Z. Wang) The complete classification of a class of conformally flat

Lorentzian hypersurfaces in R^4_1, Int. J. Math., 28 (2017), 24pp.

[9] Three special classes of Wintgen ideal submanifolds, J. Geom. Phys., 114 (2017), 523-533.

[10] (with T.Z. Li, X. Ma, C.P. Wang) Wintgen ideal submanifolds of codimension two, complex

curves, and Moebius geometry, Tohoku Math. J.,  68 (2016), 621-638.

[11] Wintgen ideal submanifolds with vanishing Moebius form, Ann. Glob. Anal. Geom., 48 (2015),

331-343.

[12] (with X. Ma) The Moebius geometry of Wintgen ideal submanifolds, ICM 2014 Satellite

Conference on Real and Complex Submanifolds, Springer Proceedings in Mathematics & Statistics,

106 (2014), 411-425.  

[13] (with X. Ma) Chen-Gackstatter type surfaces in R^4_1: deformation, symmetry, and

embeddedness, Int. J. Math., 25 (2014), 30pp.  

[14] (with C.P. Wang) Classification of Moebius homogeneous surface in S^4, Ann. Glob. Anal. Geom., 46 (2014), 241-257.

[15] (with T.Z. Li, X. Ma, C.P. Wang) Moebius geometry of three dimensional Wintgen ideal

submanifolds in S^5, Sci. China Math., 57 (2014), 1203-1220.

[16] (with Q.S. Chi, Y. Xu) Fano 3-folds and classification of constantly curved holomorphic 2-spheres of degree 6 in the complex Grassmannian G(2,5), arXiv:2208.08525, (2022).

[17] (with Y. Lv, P. Wang) Classification of Minimal Immersions of Conformally Flat 3-Tori and 4

Tori in Spheres by The First Eigenfunctions, arXiv:2212.02368, (2022).

[18] (with C.P. Wang) Willmore surfaces in 4-dimensional conformal manifolds, arXiv:2306.00846, (2023).

教学活动

l 主讲课程:《微分几何》、《抽象代数》、《拓扑学》、《高等数学》、《数学选进》、《微分流形引论》、《黎曼几何引论》

l 指导研究生:9

所获奖励

l 在中国矿业大学(北京)工作期间获校级“优秀教学质量一等奖”、“优秀课程”、“优秀班主任”、“优秀本科毕业论文一等奖指导教师”

社会工作

l


推荐链接

l 虚拟的数学博物馆,里面展览了很多优美的曲线、曲面等几何图形:https://virtualmathmuseum.org/

l 涉及曲线、曲面、分形和多面体的另一个百科全书式网站:https://mathcurve.com/



快速链接

版权所有 © 2021  威廉希尔william hill_英国威廉希尔公司-中文网站
地址:北京市昌平区高教园南三街9号   电话:61716719